Applications of DEC-MDPs in multi-robot systems
نویسندگان
چکیده
Optimizing the operation of cooperative multi-robot systems that can cooperatively act in large and complex environments has become an important focal area of research. This issue is motivated by many applications involving a set of cooperative robots that have to decide in a decentralized way how to execute a large set of tasks in partially observable and uncertain environments. Such decision problems are encountered while developing exploration rovers, team of patrolling robots, rescue-robot colonies, mine-clearance robots, etc. In this chapter, we introduce problematics related to the decentralized control of multi-robot systems. We first describe some applicative domains and review the main characteristics of the decision problems the robots must deal with. Then, we review some existing approaches to solve problems of multiagent decentralized control in stochastic environments. We present the Decentralized Markov Decision Processes and discuss their applicability to real-world multi-robot applications. Then, we introduce OC-DEC-MDPs and 2V-DEC-MDPs which have been developed to increase the applicability of DEC-MDPs.
منابع مشابه
Distributed value functions for the coordination of decentralized decision makers
In this paper, we propose an approach based on an interaction-oriented resolution of decentralized Markov decision processes (Dec-MDPs) primary motivated by a real-world application of decentralized decision makers to explore and map an unknown environment. This interaction-oriented resolution is based on distributed value functions (DVF) techniques that decouple the multi-agent problem into a ...
متن کاملHeuristic Planning for Decentralized MDPs with Sparse Interactions
In this work, we explore how local interactions can simplify the process of decision-making in multiagent systems, particularly in multirobot problems. We review a recent decision-theoretic model for multiagent systems, the decentralized sparse-interaction Markov decision process (Dec-SIMDP), that explicitly distinguishes the situations in which the agents in the team must coordinate from those...
متن کاملReinforcement Learning for DEC-MDPs with Changing Action Sets and Partially Ordered Dependencies (Short Paper)
Decentralized Markov decision processes are frequently used to model cooperative multi-agent systems. In this paper, we identify a subclass of general DEC-MDPs that features regularities in the way agents interact with one another. This class is of high relevance for many real-world applications and features provably reduced complexity (NP-complete) compared to the general problem (NEXP-complet...
متن کاملReinforcement learning for DEC-MDPs with changing action sets and partially ordered dependencies
Decentralized Markov decision processes are frequently used to model cooperative multi-agent systems. In this paper, we identify a subclass of general DEC-MDPs that features regularities in the way agents interact with one another. This class is of high relevance for many real-world applications and features provably reduced complexity (NP-complete) compared to the general problem (NEXP-complet...
متن کاملSolving Continuous-Time Transition-Independent DEC-MDP with Temporal Constraints
Despite the impact of DEC-MDPs over the past decade, scaling to large problem domains has been difficult to achieve. The scale-up problem is exacerbated in DEC-MDPs with continuous states, which are critical in domains involving time; the latest algorithm (M-DPFP) does not scale-up beyond two agents and a handful of unordered tasks per agent. This paper is focused on meeting this challenge in c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017